
1 Elementary Bayes

Once we accept the notion of subjective probability, in which probability is
interpreted as a “measure of belief”, the Bayesian method follows naturally
from a mechanistic application of the laws of probability.

If x and y are random quantities, then

� p(x, y) – is the joint density function of x and y, that describes the prob-
ability that combinations of x and y will occur together,

� p(x | y) – is the conditional density of x given y, and describes the distri-
bution of x for a given value y, and

� p(x) – is the marginal density of x, and describes the distribution of x
irrespective of y.

Given the joint density p(x, y), the marginal density p(x) is determined b aver-
aging over y

p(x) =

∫
p(x, y)dy.

The conditional density is defined as

p(x | y) =
p(x, y)

p(y)

which implies that p(x, y) = p(x | y)p(y). More generally

p(x, y, z, . . . , a, b, c, . . .) = p(x, y, z, . . . | a, b, c, . . .)p(a, b, c, . . .).

Bayes rule follows from this decomposition of the joint density, as

p(x | y)p(y) = p(x, y) = p(y | x)p(x)

so

p(x | y) =
p(y | x)p(x)

p(y)
=
p(y | x)p(x)∫
p(x, y)dx

.

2 Binomial Responses

In this section we introduce the Binomial distribution and consider a range of
common models for Binomial responses.

2.1 Binomial Distribution

A sequence of Bernoulli trials is a sequence of random experiments in which

� the outcome in each experiment is binary – either an event A occurs or
fails to occur,
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� the trials are independent – the outcome of any trial is not affected by the
outcome of any other trial, and

� the probability of observing an A in a single trial is the same for all trials.

Commonly the occurrence of A is described as a success and the absence of A
as a failure.

The archetypal example is repeatedly tossing a coin. Each toss is a trial,
the trials are independent as the outcome of one toss in no way influences any
other, and the probability of “heads” in any single trial remains constant.

The Binomial distribution describes the number of “successes” Y from n
Bernoulli trials. We write

Y ∼ Bin(n, π)

where Y is the number of successes, n the number of trials, and π the probability
of a success in any single trial. The Binomial distribution has probability mass
function

P (Y = y) =

(
n

y

)
πy(1− π)n−y

Here the term πy is the probability of the occurrence of y successes, the term
(1− π)n−y is the probability of the occurrence of n− y failures, while the term(
n
y

)
is the number of sequences successes and failures that would lead to a total

of y successes. For example, if we toss a coin twice, then only the sequence HH
can yield two heads, but a single head can be obtained as either HT or TH.

Suppose a non-contagious disease occurs in the general population with an
incidence of 0.03. If Y denotes the number of cases we observe in a random
sample of 100 people, then we may reasonably assume that

Y ∼ Bin(100, 0.03)

and the probability of observing 5 cases in the random sample of 100 people is

P (Y = 5) =

(
100

5

)
0.035(1− 0.03)100−5

= 0.1013

2.2 Estimating a Binomial Probability

Once a probability model is assumed we can determine the probability of observ-
ing particular data given known values of model parameters. Bayes’ rule allows
us to invert this relation, to derive estimates of unknown model parameters
given an observed data set.

Given the likelihood p(y|θ) – the probability of occurrence of the observed
data y for given values of the parameter θ, Bayes’ rule relates the posterior
distribution p(θ|y) – the distribution of the unknown parameters given the ob-
served data, to the prior distribution p(θ) – the distribution assumed for the
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parameters in the absence of data,

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

.

Suppose we observe y successes from n Bernoulli trials, and we wish to
estimate π, the probability of a success in a single trial. Suppose we adopt a
Beta prior for π

π ∼ Beta(a, b)

for some known a and b, so that

p(π) =
Γ(a+ b)

Γ(a)Γ(b)
πa−1(1− π)b−1.

The response is Binomial,
y | π ∼ Bin(n, π)

and so the likelihood is

p(y | π) =

(
n

y

)
πy(1− π)n−y.

The posterior density can then be computed mechanically by Bayes’ rule

p(π|y) =
p(y|π)p(π)∫ 1

0
p(y|π)p(π)dπ

=

(
n
y

)
Γ(a+ b)Γ(a)−1Γ(b)−1πy+a−1(1− π)n−y+b−1∫ 1

0

(
n
y

)
Γ(a+ b)Γ(a)−1Γ(b)−1πy+a−1(1− π)n−y+b−1dπ

=
πy+a−1(1− π)n−y+b−1∫ 1

0
πy+a−1(1− π)n−y+b−1dπ

=
Γ(n+ a+ b)

Γ(y + a)Γ(n− y + b)
πy+a−1(1− π)n−y+b−1

We can recognize this as the density function of a Beta distribution, and deduce
that

π | y ∼ Beta(y + a, n− y + b).

Deriving the posterior through the straightforward applications of Bayes’
rule approach requires the evaluation of an unpleasant integral. A much simpler
alternative is to recognize that the integral in the denominator of Bayes’ rule is
a normalizing constant, and

p(π | y) ∝ p(y | π)p(π)

∝
[(
n

y

)
πy(1− π)n−y

]
×
[

Γ(a+ b)

Γ(a)Γ(b)
πa−1(1− π)b−1

]
∝ πy+a−1(1− π)n−y+b−1.
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The only distribution with this functional form is the Beta, so again we deduce

π | y ∼ Beta(y + a, n− y + b).

Continuing the example from the previous section, suppose the incidence of
the disease is unknown, but in a random sample of 100 people we detect 5 cases.
If we take as prior

π ∼ Beta(1, 1),

the posterior is
π ∼ Beta(6, 96).

and is shown in Figure 1. The dotted lines delimit a 95% credible interval for
π – that is, 2.5% of the probability mass lies below the line on the left, and
2.5% of the probability mass lies above the line on the right. This is why it is
essential to know the full posterior, not just its kernel – the distribution must
be normalized to allow us to make probabilistic statements about π.

2.2.1 WinBUGS

We can simulate from the posterior with WinBUGS, and hence determine esti-
mates of the posterior mean and credible intervals.

In WinBUGS the model is represented as

model{

## Prior

pi ~ dbeta(1,1)

## Likelihood

y ~ dbin(pi,n)

}

## Data

list(n=100,y=5)

This program effectively mirrors the probability statements

π ∼ Beta(a, b)

y ∼ Bin(n, π)

although annoyingly, WinBUGS reverses the conventional order of parameters
to the Binomial distribution.

2.2.2 Multiple Observations

Suppose instead we had collected a data from a random sample of 100 people
in each of 3 different cities, and y1 cases were observed in the first, y2 in the
second and y3 in the third, and let us assume the incidence of the disease is the
same in each city. Assuming the incidence is the same in each city

yi ∼ Bin(ni, π)

4



0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

π

po
st

er
io

r

Figure 1: Posterior distribution for π when 5 cases are observed in a random
sample of 100 people.
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Because each sample is independent, the likelihood is simply the product of the
likelihoods for each sample

p(y1, y2, y3|π) = p(y1|π)p(y1|π)p(y1|π)

=

3∏
i=1

(
ni
yi

)
πyi(1− π)ni−yi

∝ π
∑3

i=1 yi(1− π)
∑3

i=1(ni−yi)

If we again adopt a Beta prior,

π ∼ Beta(1, 1),

we deduce that

π|y1, y2, y3 ∼ Beta(a+

3∑
i=1

yi, b+

3∑
i=1

(ni − yi)).

Note that the posterior does not depend directly on the individual yi and ni,
only their sums. The sums Sn and Sy are said to be sufficient statistics for π,
in that they contain all the relevant information for estimating π.

Figure 2 shows the posterior for n1 = n2 = n3 = 100, and y1 = 5, y2 = 8
and y3 = 1 and a = b = 1

In this case, the WinBUGS program takes the form

model {

## Prior

pi ~ dbeta(1,1)

## Likelihood

for(i in 1:3) {

y[i] ~ dbin(pi,n[i])

}

}

##Data

list(y=c(5,8,1),n=c(100,100,100))

2.3 Binomial Regression

Consider the case where we record not only a Binomial distributed response y,
but also explanatory variables x1, x2, . . . , xm, and we wish to model the role the
explanatory variables play in determining the probability of a success π in each
trial. For example, we may be monitoring incursions of an invasive species at
sites around the state, and our explanatory variables may be habitat descriptors
at the sites.

The Binomial generalized linear model assumes that the response y is Bino-
mially distributed

yi ∼ Bin(ni, πi)
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Figure 2: Posterior distribution for π when 5, 8 and 1 cases are observed in
three random samples of 100 people.

7



with a probability π of success in an an individual trial is related to a linear
combination of predictors x1, x2, . . . , xm through a monotonic link function l

l(πi) = β0 + β1x1i + β2x2i + · · ·+ βmxmi.

The three common choices of link function are:

� the logit link f(π) = log π
1−π ,

� the probit link f(π) = φ−1(π) where φ is the standard Normal distribution
function, and

� the complementary log-log link f(π) = log(− log(1− π)).

Although we can readily determine an expression for the likelihood for the
model, in practice it is not possible to evaluate the multidimensional integral∫

p(y|β)p(β)dβ

that occurs in the denominator of Bayes’ rule, and we must resort to simulation
techniques to fit this model.

For the same reason, there is no closed form conjugate prior for this problem,
and so common choices for the prior are to adopt either an improper uniform
prior

βi ∼ U(−∞,∞)

or a diffuse Normal prior
βi ∼ N(µ, σ2)

where σ2 is large.
In this case, Monte Carlo Markov Chain (MCMC) methods are essential. A

WinBUGS program for this problem that assumes diffuse Normal priors for the
βi, a logit link function and two covariates takes the general form

model {

## Prior

for(j in 1:3) {

beta[j] ~ dnorm(0,0.001)

}

## Likelihood

for(i in 1:n) {

logit(pi[i]) <- beta[1] + beta[2]*x1[i] + beta[3]*x2[i]

y[i] ~ dbin(pi[i],n[i])

}

}

##Data

list(y=c(...),

n=c(...),

x1=c(...),

x2=c(...))
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Here there are few subtle differences from our mathematical notation. Vectors
in WinBUGS are indexed from 1 so beta[1] must play the role of β0. Also,
WinBUGS parametrizes the Normal distribution in terms of its mean µ and
precision τ = σ−2, so a diffuse prior is one with τ small.

We cannot adopt the improper uniform prior here – WinBUGS syntax simply
does not allow it.

2.4 Random Effects

One strength of the MCMC approach is that it allows us to fit models that are
extremely difficult to fit with classical methods. A common example is models
containing random effects.

The standard Binomial regression model

yi ∼ Bin(ni, πi)

l(πi) = β0 + β1x1i + β2x2i + · · ·+ βmxmi

assumes that the only source of random variability is associated with the Bi-
nomial nature of the responses. Under this model two responses with precisely
the same values for the explanatory covariates should have identical probability
of success π, and all of the variability in the response arises from the Binomial
distribution. Often this is too naive; there may be sources of variability in π
that cannot be fully explained by the explanatory covariates. These unidentified
sources of additional variability can be modelled by the inclusion of additional
random terms or random effects in the linear predictor.

For example, consider the following experiment. An experiment was con-
ducted to investigate the carcinogenic effects of a toxic by-product of a mold
that infects cottonseed and grains. Twenty tanks were of rainbow trout embryos
were exposed to one of five doses of aflatoxicol for one hour. After one year,
the fish were dissected and the number of fish in each tank with liver tumours
recorded.

In this case the response is the number of fish with liver tumours recorded
in each tank, and the explanatory variable is the level of exposure to aflatoxi-
col. Yet it is somewhat naive to assume that two tanks that receive the same
exposure are actually identical replicates – there may be subtle tank to tank
differences that are not reflected simply by the aflatoxicol dose.

We could model this by incorporating an additional random component into
the linear predictor,

Tumourij ∼ Bin(nij , πij)

l(πij) = Dosei + Tankij

Tankij ∼ N(0, τT )

where Tumourij denotes the number of tumourous fish in the j-th tank receiving
the dose i, Dosei denotes the effect of dose level i and Tankij denotes the random
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tank effect. Here we have assumed that the tank effects are Normally distributed
with precision τ2T .

In WinBUGS, our model would take the form

model {

## loop over doses

for(i in 1:D) {

## loop over tanks

for(j in 1:T) {

## logit model for tumour incidence

y[i,j] ~ dbin(p[i,j],n[i,j])

logit(p[i,j]) <- dose[i]+tank[i,j]

## distribution of random tank effects

tank[i,j] ~ dnorm(0,tau.tank)

}

}

## prior for treatment means

for(i in 1:D) {

dose[i] ~ dnorm(0,0.0001)

}

## prior for precision of tank effects

tau.tank ~ dgamma(0.001,0.001)

}

3 Poisson Responses

In this section we introduce the Poisson process and consider a range of common
models for Poisson responses.

3.1 Poisson Distribution

A Poisson point process is a stream of random events in which

� the rate at which events occur is constant, and

� the occurrence of any two events is independent.

The Poisson distribution describes the number of events Y of a Poisson process
occurring in a unit interval. We write

Y ∼ Poisson(λ)

where Y is the number of events and λ the rate at which events occur. The
Poisson distribution has probability mass function

P (Y = y) =
e−λλy

y!
.
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One approach to deriving the Poisson distribution is to view it as a limiting
form of the Binomial. If π → 0 and n→∞ in such a way that nπ = λ, then(

n

y

)
πy(1− π)n−y → e−λλy

y!
.

Suppose the number of major breakdowns on a network occur according to
a Poisson process with a rate of 2.5 breakdowns per week. Then the probability
of observing 5 major breakdowns per week is

P (Y = 5) =
e−2.52.55

5!
= 0.0668

3.2 Estimating a Poisson Rate

Suppose that in a unit interval, we observe y events from a Poisson process, and
we wish to estimate the Poisson rate λ. Suppose we adopt a Gamma prior for
λ

λ ∼ Gamma(a, b)

for some a and b, so that

p(λ) =
ba

Γ(a)
λa−1e−bλ.

The response is Poisson
y | λ ∼ Poisson(λ)

and so the likelihood is

p(y | λ) =
e−λλy

y!
.

By Bayes’ rule

p(λ | y) ∝ p(y | λ)p(λ)

∝
[
e−λλy

y!

]
×
[
ba

Γ(a)
λa−1e−bλ

]
∝ e−(b+1)λλy+a−1.

We recognize as the functional form of the Gamma distribution, and so we
deduce the posterior

λ | y ∼ Gamma(y + a, b+ 1).

This shows that the Gamma distribution is a conjugate prior for the Poisson
distribution.
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Extending the example from the previous section, suppose instead the rate
of network breakdowns is unknown but in a single week we observe y = 5
breakdowns. Suppose we take as prior the Gamma distribution

λ ∼ Gamma(a, b),

which gives prior mean E(λ) = 1 and prior variance Var(λ) = 100. The posterior
is

λ | y ∼ Gamma(5.01, 1.01),

giving a posterior mean E(λ | y) ≈ 4.96 and posterior variance Var(λ | y) ≈ 4.91.
The posterior is shown in Figure 3. The dotted lines delimit a 95% credible
interval for λ.
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Figure 3: Posterior distribution for λ when 5 breakdowns are observed in a
week.
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3.2.1 WinBUGS

To represent this model in WinBUGS

model{

## Prior

lambda ~ dgamma(0.01,0.01)

## Likelihood

y ~ dpois(lambda)

}

## Data

list(y=5)

This program effectively mirrors the probability statements

λ ∼ Gamma(0.01, 0.01)

y ∼ Poisson(λ).

3.2.2 Multiple Observations

Suppose instead we had collected a data over 3 weeks, and observed y1 break-
downs in the first week, y2 in the second and y3 in the third, so that

yi ∼ Poisson(λ)

Because each sample is independent, the likelihood is simply the product of the
likelihoods for each sample

p(y1, y2, y3|λ) = p(y1|λ)p(y1|λ)p(y1|λ)

=

3∏
i=1

e−λλyi/yi!

=
e−3λλ

∑3
i=1 yi

y1!y2!y3!
.

By Bayes’ rule

p(λ | y1, y2, y3) ∝ p(y1, y2, y3 | λ)p(λ)

∝ e−(b+3)λλa−1+
∑3

i=1 yi

which we again recognize as the kernel of a Gamma distribution

λ | y1, y2, y3 ∼ Gamma(a+

3∑
i=1

yi, b+ 3).

Figure 4 shows the posterior for y1 = 5, y2 = 8 and y3 = 1.
In this case, the WinBUGS program takes the form
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Figure 4: Posterior distribution for λ when 5, 8 and 1 breakdowns are observed
over three weeks.
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model {

## Prior

lambda ~ dgamma(0.001,0.001)

## Likelihood

for(i in 1:3) {

y[i] ~ dpois(lambda)

}

}

##Data

list(y=c(5,8,1))

3.3 Poisson Regression

The standard Poisson regression model takes the from

yi ∼ Poisson(λi)

l(λi) = β0 + β1x1i + β2x2i + · · ·+ βmxmi

where yi denotes the i-th observation of the response, and xji denote the i-
th observation of the j-th explanatory variable. For Poisson regression it is
typically to use a log link function, l(λi) = log(λi).

As for Binomial regression models, some form of Monte Carlo Markov Chain
(MCMC) method is essential to a Bayesian treatment of the Poisson regression
model.

If we assume diffuse Normal priors for the βi, a log link function and if
m = 2, a WinBUGS program for the Poisson regression problem takes the form

model {

## Prior

for(j in 1:3) {

beta[j] ~ dnorm(0,0.001)

}

## Likelihood

for(i in 1:n) {

log(lambda[i]) <- beta[1] + beta[2]*x1[i] + beta[3]*x2[i]

y[i] ~ dpois(lambda[i])

}

}

##Data

list(y=c(...),

n=c(...),

x1=c(...),

x2=c(...))

Random effects may be added to the model in much the same way as for a
Binomial regression model (Section 2.4).
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4 Normal Responses

In this section we consider simple one sample and regression problems for Nor-
mally distributed data.

We assume that the reader is familiar with the basic properties of the Normal
distribution, but point out that in the Bayesian literature, it is common to
parametrize the Normal distribution in terms of its mean µ and precision τ =
σ−2, the inverse of the variance.

4.1 Estimating a Normal Mean

Suppose we observe n independent observations y1, y2, . . . , yn from a Normal
distribution with mean µ and precision τ

yi ∼ N(µ, τ)

and we wish to estimate µ. This example differs from the others we seen in that
both µ and τ are unknown. But our focus is µ, we have little interest in τ , we
say it is a “nuisance” parameter.

We adopt a Normal prior for µ and an independent Gamma prior for τ

µ ∼ N(µ0, τ0)

τ ∼ Gamma(a, b)

for some µ0, τ0, a and b, so that

p(µ, τ) = p(µ)p(τ)

=

[( τ0
2π

) 1
2

e−τ0(µ−µ0)
2/2

] [
ba

Γ(a)
τa−1e−bτ

]
.

The yi are Normally distributed, so the likelihood takes the form

p(y1, . . . , yn | µ, τ) =

n∏
i=1

( τ
2π

) 1
2

e−τ(yi−µ)
2/2

=
( τ

2π

)n
2

e−τ
∑n

i=1(yi−µ)
2/2

and by Bayes rule

p(µ, τ | y1, . . . , yn)

∝ p(y1, . . . , yn | µ, τ)p(µ, τ)

∝ τn/2+a−1e−[τ0(µ−µ0)
2/2+τ

∑n
i=1(yi−µ)

2/2]

Ideally we would like to normalize this expression to obtain p(µ, τ | y1, . . . , yn),
the joint posterior of µ and τ , then average over τ to obtain p(µ | y1, . . . , yn) the
posterior marginal distribution of µ. But even for this simple example the math-
ematics is formidable, and not particularly enlightening – as one might expect,
after integrating out τ the posterior marginal distribution of µ is recognized as
a t-distribution.
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4.2 Gibbs Sampling

To simulate from the posterior by Gibbs sampling, we require the conditional
distributions of µ and τ .

By definition

p(µ, τ | y1, . . . , yn) = p(µ | τ, y1, . . . , yn)p(τ | y1, . . . , yn).

But on the right hand side, only the conditional distribution p(µ | τ, y1, . . . , yn)
is a function of µ. So to derive p(µ | τ, y1, . . . , yn), we focus on p(µ, τ | y1, . . . , yn)
as a function of µ alone, ignoring any dependence on τ . If we expand and only
retain terms that depend on µ, we find

p(µ, τ | y1, . . . , yn) ∝ e−[τ0(µ−µ0)
2/2+τ

∑n
i=1(yi−µ)

2/2],

which can be further simplified to show that

p(µ | τ, y1, . . . , yn) ∝ p(µ, τ | y1, . . . , yn) ∝ eτ1(µ−µ1)
2/2

where

µ1 =
τ0µ0 + nτȳ

τ0 + nτ

τ1 = τ0 + nτ

ȳ =
1

n

n∑
i=1

yi.

We recognise this as the functional form of a Normal density, and so deduce
that

µ | τ, y1, . . . , yn ∼ N(µ1, τ1).

This implies that if τ is known, µ is a precision weighted average of the the prior
mean µ0 and the sample mean ȳ.

The conditional for τ is derived in a similar fashion. If we expand and only
retain terms that depend on τ , we find

p(µ, τ | y1, . . . , yn) ∝ τn/2+a−1e−
1
2 τ

∑n
i=1(yi−µ)

2

.

This expression can be recognized as the density of a Gamma distribution

τ | µ, y1, . . . , yn ∼ Gamma (a+ n/2, b+ S/2) .

where

S =

n∑
i=1

(yi − µ)2.

This conditional distribution has mean

E[τ | µ, y1, . . . , yn] =
n+ 2a

S + 2b
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which can be seen to be a compromise between the inverse of the usual “sum of
squares” estimator of variance and the prior.

To Gibbs sample from the posterior p(µ, τ | y1, . . . , yn) we repeatedly sample
from these two conditionals in turn. That is, given some initial point (µ(0), τ (0)),
we repeatedly sample first from

µ(k+1) | τ (k), y1, . . . , yn ∼ N

(
τ0µ0 + nτ (k)ȳ

τ0 + nτ (k)
, τ0 + nτ (k)

)
then from

τ (k+1) | µ(k+1), y1, . . . , yn ∼ Gamma

(
a+ n/2, b+

1

2

n∑
i=1

(
yi − µ(k+1)

)2)

to generate a sequence of draws (µ(k), τ (k)) from the posterior.
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