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Rough Schedule

� Introduction

� Simple mathematical examples

� WinBUGs

� Principles of Markov Chain Monte Carlo

� Advanced techniques

� Applications
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Notations

p(x , y) – the joint distribution of x and y describes how x
and y vary together.

p(x |y) – the conditional distribution of x given y describes
how x varies for a given value of y .

p(x) – the marginal distribution of x describes how x
varies averaged over y .



Subjective Probability

Frequentist Probability – Probability is the ‘long run frequency
of occurrence’. This is the basis of classical statistics.

Subjective Probability – Probability is a measure of ‘strength of
belief’. As it based on beliefs, it is inherently subjective.

In classical statistics, parameters are fixed numbers. In the
Bayesian paradigm, parameters are random.



Key Elements

Knowledge is represented as probability distributions.

Prior Distribution p(θ) – Represents our knowledge of the
parameters θ before any data is observed.

Likelihood p(y |θ) – The distribution of the data y for given
parameters θ – the likelihood is a probabilistic model of the data
collection process.

Posterior Distribution p(θ|y) – Represents our knowledge of the
parameters after the data is observed.



Bayes’ Rule

The posterior p(θ|y) is determined from the likelihood p(y |θ) and
prior p(θ) by Bayes’ rule

p(θ|y) =
p(y |θ)p(θ)∫
p(y |θ)p(θ)dθ

For fixed y the denominator is just a constant, so

p(θ|y) ∝ p(y |θ)p(θ).



Coin Example

Suppose we toss a coin N times and record the numbers of heads
y and wish to estimate π = Pr(H). If we adopt a (conjugate) Beta
prior

π ∼ Beta(a, b)

the likelihood is Binomial

y |π ∼ Binomial(N, π)

and by Bayes’ rule

π|y ∼ Beta(a + y , b + N − y).



Coin Example

prior 4H, 6T 12H, 8T 17H, 13T
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Confidence Intervals
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4H, 6T
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17H, 13T

As the volume
of data increases
the posterior
becomes more
concentrated.



Comparing Priors

prior 17H, 13T
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The choice of
prior influences
the posterior.



Large Samples

prior 120H, 80T
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As the volume
of data
increases, the
impact of the
prior washes out.



Priors

Informative Prior – Reflects the current state of knowledge of the
model parameters.

Non-informative Prior – Intended to reflect a state of ignorance
of the model parameters.



Priors

Conjugate Prior – A prior chosen for its mathematical expediency.

Improper Prior – A ‘prior’ that is not technically a distribution.

Jeffereys’ Prior – A prior that is (locally) invariant under a
reparametrization of the model.



Priors and Reparametrization

Pr(H)
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Pr(H)2
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“Noninformative”
is a slippery
concept.



Improper Priors

For a typical regression problem, we would wish to adopt a
non-informative priors for the coefficients of the form

βi ∼ U(−∞,∞)

This prior is improper – there is no U(−∞,∞) distribution.

Instead we assume
p(βi ) ∝ 1

and the missing constant of proportionality is eliminated by Bayes’
rule.



Confidence Intervals

In classical statistics, if [L,U] is a 95% confidence interval for µ,
we cannot write

Pr(L < µ < U) = 0.95

because none of L, U, or µ are random.

In the Bayesian paradigm, µ is random and confidence intervals
have a natural interpretation.



Hypothesis Tests

We can test

H0 : π <
1

2

against the alternative

H1 : π >
1

2

by computing the posterior probability

Pr(H0|y) =

∫ 1
2

0
p(π|y)dπ.

Moreover, this provides evidence in support of H0, in contrast to
the classical hypothesis test which is phrased in terms of evidence
against H0.



Composite Tests

Pr(H0|y)=0.237
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17H, 13T

Composite tests
correspond to
simple
probability
statements.



MCMC
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17H, 13T

MCMC draws a
random sample
from the
posterior. The
properties of the
sample
approximate the
properties of the
posterior.



MCMC
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17H, 13T

Increasing the
size of the
sample improves
the accuracy of
the
approximation.



Gibbs Sampling

Sample from the
conditional
distribution to
update
parameters in
blocks, one
block at a time.



Gibbs Sampling

Strong
correlation leads
to poor mixing.



Binomial Problem

model {

## Likelihood

for(i in 1:N) {

y[i] ~ dbin(pi,n[i])

}

## Prior

pi ~ dbeta(a,b)

}

Observations are Binomially
distributed

yi |π ∼ Binomial(ni , π)

and we adopt a Beta prior

π ∼ Beta(a, b)



Regression Problem

model {

## Likelihood

for(i in 1:N) {

y[i] ~ dnorm(mu[i],tau)

mu[i] <- b0+b1*x1[i]+b2*x2[i]

}

## Prior

b0 ~ dnorm(0,0.01)

b1 ~ dnorm(0,0.01)

b2 ~ dnorm(0,0.01)

tau ~ dgamma(0.01,0.01)

}

Observations are Normally
distributed about a mean that is
a function of covariates

yi |βi , τ ∼ N(µi , τ)

µi = β0 + β1x1i + β2x2i

and we adopt diffuse priors

βi ∼ N(0, 0.01)

τ ∼ Gamma(0.01, 0.01)



Poisson GLM

model {

## Likelihood

for(i in 1:N) {

y[i] ~ dpois(mu[i])

log(mu[i]) <- b0+b1*x[i]

}

## Prior

b0 ~ dnorm(0,0.01)

b1 ~ dnorm(0,0.01)

}

Observations are Poisson
distributed about a mean that is
related to covariates through a
link function

yi |βi ∼ Poisson(λi )

λi = β0 + β1xi

and we adopt diffuse priors

βi ∼ N(0, 0.01)
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